Kalkül

Aus Twilight-Line Medien

Als der oder das Kalkül (frz. calcul „Rechnung“; von lat. calculusRechenstein“, „Spielstein“) versteht man in den formalen Wissenschaften wie Logik und Mathematik ein formales System von Regeln, mit denen sich aus gegebenen Aussagen (Axiomen) weitere Aussagen ableiten lassen. Kalküle, auf eine Logik selbst angewandt, werden auch Logikkalküle genannt.

Das Wort Kalkül im logischen und mathematischen Sinn ist ein Maskulinum (der Kalkül). Kalkül im umgangssprachlichen Sinn wird auch als Neutrum (das Kalkül, deshalb auch „ins Kalkül ziehen“) in der Bedeutung von „Berechnung“ oder „Überlegung“ verwendet.

Bestandteile[Bearbeiten]

Ein Kalkül besteht aus folgenden Bestandteilen:

  • Bausteine, also Grundelemente (Grundzeichen), aus denen komplexere Ausdrücke zusammengesetzt werden. Die Gesamtheit der Bausteine des Kalküls wird auch sein Alphabet genannt. Für einen Kalkül der Aussagenlogik z. B. wählt man als Bausteine Satzbuchstaben (Satzvariablen), einige Konnektive (z. B. →, ∧, ∨ und ¬) und gegebenenfalls Gliederungszeichen (Klammern). In Analogie zu natürlichen Sprachen kann man die Liste der Bausteine als „Wörterbuch“ (im Sinn einer Wörterliste) des Kalküls bezeichnen.
  • Formationsregeln, mit denen festgelegt wird, wie die Bausteine zu komplexen Objekten, die auch wohlgeformte Formeln genannt werden, zusammengesetzt werden dürfen. Die Gesamtheit der von den Formationsregeln gebildeten, wohlgeformten Ausdrücke wird auch Satzmenge des Kalküls genannt und ist eine formale Sprache über den Bausteinen. Ein Kalkül für die Aussagenlogik könnte zum Beispiel festlegen, dass man aus zwei bestehenden Sätzen einen neuen Satz bilden darf, indem man die beiden mit einem zweistelligen Konnektiv verbindet. So sind die Formationsregeln in Analogie zur natürlichen Sprache die „Grammatik“ des Kalküls.
  • Transformationsregeln (Ableitungsregeln, Deduktionsregeln), die angeben, wie bestehende wohlgeformte Objekte (Ausdrücke, Sätze) des Kalküls umgeformt werden dürfen, um neue Objekte daraus zu erzeugen. In einem logischen Kalkül sind die Transformationsregeln Schlussregeln, die angeben, wie man aus bestehenden Sätzen auf neue Sätze schließen kann. Ein Beispiel für eine Schlussregel ist der Modus ponens, der erlaubt, von zwei Sätzen der Form „A → B“ und „A“ auf den Satz der Form „B“ zu schließen.
  • Axiome sind Objekte (Ausdrücke), die nach den Formationsregeln des Kalküls gebildet sind und die ohne weitere Rechtfertigung, d. h., ohne eine Transformationsregel auf bereits bestehende Ausdrücke anzuwenden, verwendet werden dürfen.

Von diesen Bestandteilen ist nur der letzte (die Axiome) optional. Ein Kalkül, der Axiome beinhaltet – egal wie viele oder wie wenige –, wird axiomatischer Kalkül (auch „axiomatischer Regelkalkül“) genannt. Kalküle, die ohne Axiome auskommen, dafür aber meistens mehr Transformationsregeln beinhalten, werden oft als Regelkalküle (auch Schlussregelkalküle) bezeichnet.

Ein Kalkül ordnet weder seinen Bausteinen noch den daraus erzeugten zusammengesetzten Objekten eine Bedeutung zu. Gibt man für die von einem Kalkül erzeugten Zeichenreihen eine Interpretation an, d. h., legt man für sie eine Bedeutung fest, spricht man von einem interpretierten Kalkül, ansonsten von einem uninterpretierten Kalkül.

Ein Kalkül bildet sozusagen einen fest abgeschlossenen Handlungsspielraum. Das Schachspiel mit den Figuren (Axiome) und Zugregeln (Schlussregeln) bietet, wie Spiele im Allgemeinen, ein anschauliches Beispiel. Ein vorgegebenes Ziel (z. B. Gewinn des Spiels, Lösung eines – politischen – Konflikts, Finden eines Weges aus dem Labyrinth) gehört jedoch nicht zum Kalkül.

Quellen[Bearbeiten]

  • Homberger, Sachwörterbuch zur Sprachwissenschaft (2000)/Kalkül.