Trägheitskraft

Aus Twilight-Line Medien

In der klassischen Mechanik ist die Trägheit eine Erfahrungstatsache: Physikalische Körper ohne äußere Krafteinwirkung verharren in ihrem Bewegungszustand. Die bei der Änderung des Bewegungszustandes auftretende Trägheitskraft wird verstanden als

  • … Widerstand, den jeder Körper einer tatsächlichen Beschleunigung seiner Bewegung entgegensetzt. Diesen Trägheitswiderstand entwickelt der beschleunigte Körper „von innen heraus“, einfach weil er Masse hat. Er lässt sich durch eine Kraft ausdrücken, nämlich durch die d’Alembertsche Trägheitskraft. Die d’Alembertsche Trägheitskraft hat immer eine wohldefinierte Größe, denn sie ist entgegengesetzt gleich zur Summe aller von außen wirkenden Kräfte.
  • … Kraft auf einen Körper, die zusätzlich zu spürbaren äußeren Kräften angenommen wird, um seine Dynamik zu deuten, wenn seine Bewegung im Rahmen eines beschleunigten Bezugssystems beschrieben wird (etwa relativ zum bremsenden Auto, zur rotierenden Drehscheibe auf dem Spielplatz oder zur Erdoberfläche). Die so definierte Trägheitskraft tritt, auch bei Abwesenheit von äußeren Kräften, in jedem beschleunigten Bezugssystem auf. Ihre Stärke und Richtung an einem bestimmten Ort sind keine feststehenden Größen, sondern hängen von der Wahl des beschleunigten Bezugssystems ab. In einem Inertialsystem tritt diese Trägheitskraft gar nicht auf. Deshalb wird sie häufig als Scheinkraft bezeichnet.

Nach Betrag und Richtung ist die d’Alembertsche Trägheitskraft gleich der Scheinkraft (nach der Definition im zweiten Punkt), wenn für die Beschreibung der Bewegung dasjenige beschleunigte Bezugssystem gewählt wurde, das sich mit dem beschleunigten Körper mitbewegt.

Obwohl die Trägheitskraft als rein formale Größe definiert wird, ist sie häufig für das Verständnis von Alltagserfahrungen von Nutzen. Einfache Beispiele sind, wenn man sich im Auto bei starken Bremsen nach vorne in die Gurte gedrückt fühlt oder bei engen Kurven gegen die Seitenwand. In allen solchen Fällen geht die Wirkung, die scheinbar von der Trägheitskraft verursacht wird, auf das Wirken echter äußerer Kräfte zurück. In den beiden Beispielen etwa üben die Gurte auf den Körper eine nach hinten gerichtete Zugkraft aus, die ihn so verlangsamt, dass er nicht vom ebenfalls langsamer werdenden Sitz nach vorne rutscht, und ebenso wirkt die Seitenwand seitlich auf den Körper ein, so dass seine Bewegungsrichtung gegenüber der Erde ständig der Kurvenfahrt angepasst wird.

Die Trägheitskraft genügt nicht dem Prinzip von Actio und Reactio, denn es gibt keinen zweiten Körper, von dem sie ausgeht. Sowohl die Trägheitskraft im beschleunigten Bezugssystem als auch d’Alembertsche Trägheitskraft sind proportional zur Masse des Körpers. Deshalb werden die Trägheitskräfte auch Massenkräfte genannt.

Zu den bekannten Erscheinungsformen zählen die Trägheitskraft beim Anfahren und Abbremsen, die Zentrifugalkraft und die Corioliskraft. Die Gravitation zählt in der klassischen Mechanik zu den spürbaren äußeren Kräften. Da aber nach dem Äquivalenzprinzip auch die Gravitation eine Massenkraft ist und sich eine konstante geradlinige Beschleunigung nicht vom Wirken eines homogenen Gravitationsfeldes unterscheiden lässt, ist es möglich, auch die Gravitation als vom Bezugssystem abhängige Trägheitskraft aufzufassen. Dies ist der Ausgangspunkt der Allgemeinen Relativitätstheorie.

Trägheitskräfte sind in der theoretischen und in der technischen Mechanik hilfreiche Größen für das Aufstellen und Lösen von Bewegungsgleichungen mechanischer Systeme.