Zustand (Quantenmechanik)

Aus Twilight-Line Medien

Ein quantenmechanischer Zustand ist die Beschreibung des Zustands eines physikalischen Systems nach den Regeln der Quantenmechanik. Diese unterscheidet sich grundlegend von der Beschreibung des Zustands nach den Regeln der klassischen Physik, damit die an quantenphysikalischen Systemen gemachten Beobachtungen erfasst werden können. Zu den verschiedenen Interpretationen der Quantenmechanik gehören unterschiedliche Zustandsbegriffe. Dieser Artikel behandelt den Zustandsbegriff der weit verbreiteten Kopenhagener Interpretation.

Überblick[Bearbeiten]

Physikalischer Gehalt[Bearbeiten]

Im Gegensatz zum klassischen Begriff legt der Zustand in der Kopenhagener Interpretation der Quantenmechanik nicht für jede am System durchführbare Messung einen mit Sicherheit zu erwartenden Messwert fest, sondern nur für jeden möglichen Messwert die Wahrscheinlichkeit P, dass gerade dieser Wert eintritt. Den Grenzfall P=1 für einen Messwert (und damit P=0 für alle anderen), was die sichere Voraussage dieses einen Messwerts bedeutet, gibt es nur bei denjenigen Zuständen, die Eigenzustände zu der betreffenden Messgröße sind. Für zwei verschiedene Messgrößen existieren in vielen Fällen überhaupt keine gemeinsamen Eigenzustände, so z. B. für den Ort und die Geschwindigkeit. Solche Messgrößen heißen zueinander inkommensurabel. Im Gegensatz zum klassischen Zustand steht auch, dass die Zeitentwicklung des quantenmechanischen Zustands nicht durchgehend deterministisch festgelegt ist. Stattdessen wird im Allgemeinen durch eine Messung der Zustand des Systems auf eine Weise verändert, die nicht beeinflusst und nur mit gewisser Wahrscheinlichkeit vorhergesagt werden kann.

Die sogenannte „Präparation“ eines Systems in einem bestimmten Zustand erfolgt durch die gleichzeitige Messung eines maximalen Satzes kommensurabler physikalischer Größen. Nach dieser Messung befindet sich das System in einem wohldefinierten gemeinsamen Eigenzustand aller dieser Messgrößen, sodass diese bestimmte Werte besitzen. Wenn das System nicht schon vorher in einem solchen gemeinsamen Eigenzustand war, verursacht die Messung schlagartig eine Zustandsreduktion, auch Kollaps genannt, sodass danach alle anderen möglichen Messwerte dieser Größen die Wahrscheinlichkeit Null haben. Die Zustandsreduktion ist kein physikalischer Vorgang, sondern beschreibt die durch die Messung eingetretene genauere Information des Beobachters. Zwischen zwei Messungen ist die Zeitentwicklung des Zustands durch eine Bewegungsgleichung deterministisch festgelegt; im nichtrelativistischen Fall durch die Schrödinger-Gleichung, im relativistischen, abhängig von Spin und Masse des Teilchens, durch die Klein-Gordon-Gleichung (Spin 0), die Dirac-Gleichung (massiv, Spin ½), die Weyl-Gleichung (masselos, Spin ½), die Proca-Gleichung (massiv, Spin 1) oder die Maxwell-Gleichungen (masselos, Spin 1).

Quellen[Bearbeiten]

  • Wolfgang Nolting: Grundkurs Theoretische Physik 5/1; Quantenmechanik – Grundlagen. 5. Auflage. Springer, Berlin Heidelberg 2002, ISBN 3-540-42114-9, S. 119.