Physik

Aus Twilight-Line Medien

Die Physik ist eine Naturwissenschaft, die grundlegende Phänomene der Natur untersucht. Um deren Eigenschaften und Verhalten anhand von quantitativen Modellen und Gesetzmäßigkeiten zu erklären, befasst sie sich insbesondere mit Materie und Energie und deren Wechselwirkungen in Raum und Zeit.

Erklären bedeutet hier einordnen, vergleichen, allgemeineren Erscheinungen zuordnen oder aus allgemeiner gültigen Naturgesetzen folgern. Dazu ist häufig die Bildung neuer geeigneter Begriffe nötig, teilweise auch solcher, die der unmittelbaren Anschauung nicht mehr zugänglich sind. Erklärungen in dem philosophischen Sinn, warum die Natur sich so verhält, kann die Physik nicht leisten. Stattdessen setzt sie sich mit dem wie auseinander. Zum Beispiel kann sie nicht erklären, warum Massen einander anziehen. Dieses Verhalten kann lediglich mit verschiedenen Modellen beschrieben werden. Newton tat dies, indem er annahm, dass zwischen Körpern eine Anziehungskraft herrscht. Eine ganz andere Vorstellung hatte Einstein, der die Gravitation damit erklärte, dass Materie die Raumzeit krümmt.

Die Arbeitsweise der Physik besteht in einem Zusammenwirken experimenteller Methoden und theoretischer Modellbildung. Physikalische Theorien bewähren sich in der Anwendung auf Systeme der Natur, indem sie Vorhersagen über spätere Zustände erlauben, wenn ein früherer Zustand bekannt ist. Erkenntnisfortschritte ergeben sich durch das Wechselspiel von Beobachtung oder Experiment mit der Theorie. Eine neue oder weiterentwickelte Theorie kann bekannte Ergebnisse besser oder überhaupt erstmals erklären und darüber hinaus neue Experimente und Beobachtungen anregen, deren Ergebnisse dann die Theorie bestätigen oder ihr widersprechen. Unerwartete Beobachtungs- oder Versuchsergebnisse geben Anlass zur Theorieentwicklung in verschiedener Gestalt, von schrittweiser Verbesserung bis hin zur völligen Aufgabe einer lange Zeit akzeptierten Theorie.

Erkenntnisse und Modelle der Physik werden in der Chemie, Geologie, Biologie, Medizin und den Ingenieurwissenschaften genutzt.

Geschichte von Begriff und Disziplin der Physik[Bearbeiten]

Die Disziplin der Physik in ihrer heutigen Gestalt hat ihre Ursprünge in der Philosophie, die sich seit der Antike im weitesten Sinne mit den Gründen und Ursachen aller Dinge befasst. Von Aristoteles bis ins beginnende 19. Jahrhundert wurde die Physik als das Teilgebiet der Philosophie verstanden, das sich als Naturlehre, Naturgeschichte, Chemie oder angewandte Mathematik mit den Gegebenheiten der Natur beschäftigt. Gegenüber den rein philosophischen Erklärungsversuchen der Naturvorgänge spielte die Art von Erkenntnis, die durch systematische und genaue Beobachtung, also empirisch zu gewinnen ist, lange Zeit keine Rolle. Ab Mitte des 13. und im Laufe des 14. Jahrhunderts plädierten dann einige von den die Natur erforschenden Philosophen – wie etwa Roger Bacon – für ein größeres Gewicht der durch Beobachtung zu erlangenden Naturerkenntnis. Diese Tendenzen mündeten ab dem frühen 17. Jahrhundert, namentlich mit Galileo Galilei und Isaac Newton, in die Entwicklung einer Methodologie der physikalischen Erkenntnis, die vorrangig an empirischen und sogar experimentellen Standards orientiert ist und diesen vor überkommenen philosophischen Grundsätzen im Zweifelsfall sogar den Vorrang einräumt. Dieser Ansatz wurde zunächst als „experimentelle Philosophie“ bezeichnet und führte beim Verständnis vieler unterschiedlicher Naturvorgänge rasch zu bedeutenden Erfolgen. Dennoch dauerte es noch bis ins 19. Jahrhundert, dass er sich endgültig in der Physik durchsetzen konnte und sie damit als eigenständige Disziplin in ihrem heutigen Sinn etablierte.

Hinsichtlich ihrer Methode, ihres Gegenstandsbereichs, ihrer wissenschaftssystematischen und institutionellen Verortung teilt sich die Physik im Wesentlichen in zwei große Gebiete auf. Die theoretische Physik beschäftigt sich vorwiegend mit formalen mathematischen Beschreibungen und den Naturgesetzen. Sie abstrahiert Vorgänge und Erscheinungen in der wirklichen Natur in Form eines Systems von Modellen, allgemeingültigen Theorien und Naturgesetzen sowie induktiv gewählten Hypothesen. Bei der Formulierung von Theorien und Gesetzen bedient sie sich vielfach der Methoden der Mathematik und der Logik. Ziel ist, das Verhalten eines Systems theoretisch vorherzusagen, damit dies durch Vergleich mit den Vorgängen und Erscheinungen in der wirklichen Natur überprüft werden kann. Diese Überprüfung in Form reproduzierbarer Messungen an gezielt gestalteten physikalischen Experimenten oder durch Beobachtung natürlicher Phänomene ist das Gebiet der Experimentalphysik. Das Ergebnis der Überprüfung bestimmt über die Gültigkeit und Vorhersagekraft des Modells und der darin gewählten Begriffe, Hypothesen und Methoden.

Die Physik steht in enger Verbindung zu den Ingenieurwissenschaften und den anderen Naturwissenschaften von der Astronomie und Chemie bis zur Biologie und den Geowissenschaften. Die Physik wird dabei häufig als grundlegende oder fundamentale Naturwissenschaft aufgefasst, die sich am stärksten mit den Grundprinzipien befasst, die die natürlichen Vorgänge bestimmen. Die Grenzziehung zu den anderen Naturwissenschaften hat sich historisch ergeben, wird jedoch insbesondere mit dem Aufkommen neuer Wissenschaftsdisziplinen immer schwieriger.

In der heutigen Physik ist vor allem die durch Atom- und Molekülphysik und Quantenchemie markierte Grenze zur Chemie fließend. Zur Abgrenzung gegenüber der Biologie wurde die Physik oftmals als die Wissenschaft von der unbelebten im Gegensatz zur belebten Natur bezeichnet, womit jedoch eine Beschränkung impliziert wird, die so in der Physik nicht existiert. Die Ingenieurwissenschaften sind durch ihren engen Bezug zur praktischen technischen Anwendung von der Physik abgegrenzt, da in der Physik das Verständnis der grundlegenden Mechanismen im Vordergrund steht. Die Astronomie hat keine Möglichkeit, Laborexperimente durchzuführen, und ist daher allein auf Naturbeobachtung angewiesen, was hier zur Abgrenzung gegen die Physik herangezogen wird.

Methodik[Bearbeiten]

Die Erkenntnisgewinnung in der Physik verläuft in enger Verzahnung von Experiment und Theorie, besteht also aus empirischer Datengewinnung und -auswertung und gleichzeitig dem Erstellen theoretischer Modelle zu ihrer Erklärung. Dennoch haben sich im Verlauf des 20. Jahrhunderts Spezialisierungen herausgebildet, die insbesondere die professionell betriebene Physik heute prägen. Demnach lassen sich grob Experimentalphysik und theoretische Physik voneinander unterscheiden.

Experimentalphysik[Bearbeiten]

Während manche Naturwissenschaften wie etwa die Astronomie und die Meteorologie sich methodisch weitgehend auf Beobachtungen ihres Untersuchungsgegenstandes beschränken müssen, steht in der Physik das Experiment im Vordergrund. Die Experimentalphysik versucht durch Entwurf, Aufbau, Durchführung und Auswertung von Experimenten Gesetzmäßigkeiten aufzuspüren und mittels empirischer Modelle zu beschreiben. Sie versucht einerseits physikalisches Neuland zu betreten, andererseits überprüft sie von der theoretischen Physik gemachte Vorhersagen.

Grundlage eines physikalischen Experimentes ist es, die Eigenschaften eines zuvor präparierten physikalischen Systems, zum Beispiel eines geworfenen Steins, eines eingeschlossenen Gasvolumens oder eines Teilchens bei einem Stoßprozess durch Messung in Zahlenform auszudrücken, etwa als Aufprallgeschwindigkeit, als Druck oder als Länge der beobachtbaren Teilchenspuren im Detektor.

Konkret werden entweder nur die zeitunabhängigen (statischen) Eigenschaften eines Objektes gemessen oder es wird die zeitliche Entwicklung (Dynamik) des Systems untersucht, etwa indem Anfangs- und Endwerte einer Messgröße vor und nach dem Ablauf eines Vorgangs bestimmt werden oder indem kontinuierliche Zwischenwerte festgestellt werden.

Theoretische Physik[Bearbeiten]

Die theoretische Physik sucht die empirischen Modelle der Experimentalphysik mathematisch auf bekannte Grundlagentheorien zurückzuführen oder, falls dies nicht möglich ist, Hypothesen für eine neue Theorie zu entwickeln, die dann experimentell überprüft werden können. Sie leitet weiterhin aus bereits bekannten Theorien empirisch überprüfbare Voraussagen ab.

Bei der Entwicklung eines Modells wird grundsätzlich die Wirklichkeit idealisiert; man konzentriert sich zunächst nur auf ein vereinfachtes Bild, um dessen Aspekte zu überblicken und zu erforschen. Nachdem das Modell für diese Bedingungen ausgereift ist, wird es weiter verfeinert.

Zur theoretischen Beschreibung eines physikalischen Systems benutzt man die Sprache der Mathematik. Seine Bestandteile werden dazu durch mathematische Objekte wie zum Beispiel Skalare oder Vektoren repräsentiert, die in durch Gleichungen festgelegten Beziehungen zueinander stehen. Aus bekannten Größen werden unbekannte errechnet und damit zum Beispiel das Ergebnis einer experimentellen Messung vorhergesagt. Diese auf Quantitäten konzentrierte Sichtweise unterscheidet die Physik maßgeblich von der Philosophie und hat zur Folge, dass nicht quantifizierbare Modelle, wie das Bewusstsein, nicht als Teil der Physik betrachtet werden.

Das fundamentale Maß für den Erfolg einer naturwissenschaftlichen Theorie ist die Übereinstimmung mit Beobachtungen und Experimenten. Durch den Vergleich mit dem Experiment lassen sich der Gültigkeitsbereich und die Genauigkeit einer Theorie ermitteln; allerdings lässt sie sich niemals „beweisen“, bestenfalls in immer mehr Fällen bestätigen. Um eine Theorie zu widerlegen oder die Grenzen ihres Gültigkeitsbereiches zu zeigen, genügt im Prinzip ein einziges Experiment mit unerklärbarem Ergebnis, sofern es sich als reproduzierbar erweist.

Experimentalphysik und theoretische Physik stehen also in steter Wechselbeziehung zueinander. Es kann allerdings vorkommen, dass Ergebnisse der einen Disziplin der anderen vorauseilen: So sind derzeit viele Voraussagen der Stringtheorie nicht experimentell überprüfbar; andererseits sind viele teilweise sehr genau gemessene Werte aus dem Gebiet der Teilchenphysik zum heutigen Zeitpunkt (2022) durch die zugehörige Theorie, die Quantenchromodynamik, nicht berechenbar.