Himmelsmechanik

Aus Twilight-Line Medien

Die Himmelsmechanik beschreibt als Teilgebiet der Astronomie die Bewegung astronomischer Objekte aufgrund physikalischer Theorien mit Hilfe mathematischer Modellierung. So ist die Beschreibung der Planetenbewegung durch die Keplerschen Gesetze eine mathematische Modellierung, die in der Folge durch die Newtonsche Mechanik theoretisch begründet wurde. Der Begriff Astrodynamik wird manchmal synonym gebraucht, bezeichnet aber speziell die Bewegung künstlicher Körper im Gravitationsfeld. Das Erstellen tabellarischer Übersichten der Bewegung astronomischer Objekte wird als Ephemeridenrechnung bezeichnet.

Die Himmelsmechanik beruht im Wesentlichen auf dem Gravitationsgesetz und einer genauen Definition von Koordinaten- und Zeitsystemen. Als Fachgebiet hängt sie eng mit der Astrometrie zusammen.

Entwicklung[Bearbeiten]

Altertum und Mittelalter[Bearbeiten]

Am Anfang der Himmelsmechanik steht die Vorhersage der Bewegung der Planeten, zu denen ursprünglich nicht die Erde, aber auch Sonne und Mond gezählt wurden. Die Ersten, die aus bereits recht genauen Beobachtungen dieser Bewegungen Regelmäßigkeiten ableiteten, waren wahrscheinlich ab dem 3. Jahrtausend v. Chr. die Bewohner Mesopotamiens. Dies ist in späteren Keilschrifttexten der Babylonier und Assyrer überliefert, beispielsweise den Venus-Tafeln des Ammi-saduqa. Zu ihren Erkenntnissen zählt auch die Entdeckung der Regelmäßigkeit im Auftreten von Sonnen- oder Mondfinsternissen, die heute als Saroszyklus bekannt ist. Den Ägyptern gelang ebenfalls schon im 3. Jahrtausend v. Chr. durch Beobachtung der heliakischen Aufgänge des Sirius eine Bestimmung der Jahreslänge mit 365,25 Tagen, die in Europa bis zur Einführung des gregorianischen Kalenders in der Neuzeit Bestand hatte.

Den nächsten großen Schritt vollzogen die Griechen durch Entwicklung mathematischer Methoden und Modelle. Mit geometrischen Methoden bestimmte Eratosthenes im 3. Jahrhundert v. Chr. den Umfang der Erde mit 252.000 Stadien bzw. dem 50-fachen der Entfernung von Alexandria und Assuan, also 41.750 km, was dem tatsächlichen Wert (40.075 km am Äquator) sehr nahekam. Hipparchos im 2. Jahrhundert v. Chr. berechnete die Entfernung des Mondes mit 30 Erddurchmessern (= 382.260 km), was mit der heute gemessenen mittleren Entfernung von 385.000 km ebenfalls fast übereinstimmt. Außerdem entdeckte Hipparchos aufgrund des Vergleichs mit älteren Messungen die Präzession des Frühlingspunktes, eine Erscheinung, die durch ein Taumeln der Erdachse im Lauf von über 25.000 Jahren entsteht.

Mitte des 2. Jahrhunderts n. Chr. wurde das astronomische Wissen der Antike von Claudius Ptolemaeus zu einem detaillierten geozentrischen Weltbild ausgearbeitet (→ Ptolemäisches Weltbild). Sein Werk Almagest blieb für rund 1400 Jahre maßgeblich für alle praktischen Berechnungen der Bewegungen am Himmel. Das Modell geht von einer ruhenden Erde aus und weist Sonne, Mond und Planeten Bewegungen zu, die ausschließlich aus gleichförmigen Kreisbewegungen zusammengesetzt sind, weil diese nach der aristotelischen Philosophie die einzig mögliche Form der Bewegung ohne andauernden Antrieb seien. Angenäherte Übereinstimmung mit den Beobachtungen der einzelnen Planeten erzielte Ptolomäus durch die Annahme von komplizierten Bahnen bestehend aus je einem größeren Kreis (Deferent), auf dem ein (oder mehrere) kleinere Kreise umlaufen (Epizykel). Außerdem musste er ansetzen, dass die Erde nicht im Mittelpunkt der Deferenten steht, sondern etwas exzentrisch, und dass die Kreisbewegungen auf den Deferenten nur dann mit konstanter Winkelgeschwindigkeit ablaufen, wenn diese auf wieder anders gelegene Mittelpunkte bezogen werden (Äquanten). Trotz der komplizierten Konstruktion wichen die beobachteten Positionen der Planeten von den berechneten in unregelmäßiger Weise ab, oftmals um bis zu 10′ (das entspricht 1/3 Monddurchmesser).

Kopernikanische Wende[Bearbeiten]

Die Wende zum heliozentrischen Weltbild, auch als Kopernikanische Wende bezeichnet, wurde Anfang des 16. Jahrhunderts von Nikolaus Kopernikus durch seine Arbeit Commentariolus vorbereitet und 1543 durch sein Hauptwerk De revolutionibus orbium coelestium untermauert. Das Modell geht von den gleichen (zum Teil falschen) Beobachtungsdaten aus wie Ptolomäus, reiht aber die Erde unter die Planeten ein, deren Bahnen nun alle um die Sonne herumführen.

Damit erreichte Kopernikus vor allem eine starke konzeptionelle Vereinfachung, weil die ungleichmäßigen Bewegungen der Planeten, soweit sie durch die Beobachtung von der Erde aus verursacht sind, nicht mehr bei jedem Planeten einzeln modelliert werden müssen. Zudem konnten in seinem System die Abstände der Planeten von der Sonne bestimmt werden (in Einheiten des Radius der Erdbahn, der damit zur astronomischen Einheit wurde), und damit auch ihre Bahngeschwindigkeit. Erst daraus ergab sich z. B., dass mit dem Abstand die Umlaufzeit zunimmt und die Bahngeschwindigkeit abnimmt. Kopernikus blieb bei dem aristotelischen Grundgedanken, dass die Himmelskörper sich nur auf vorbestimmten Kreisbahnen bewegen würden. Eine merkliche Verbesserung der Genauigkeit konnte sich durch das kopernikanische Modell daher nicht ergeben, so dass für die Berechnung von Ephemeriden und Horoskopen auch weiterhin die auf dem ptolemäischen Modell beruhenden Tabellenwerke verwendet wurden.

Im kopernikanischen System ist die Erde vom Mittelpunkt des Sonnensystems zu einem von mehreren Planeten herabgestuft, was als einer der Auslöser des Umbruchs vom Mittelalter zur Neuzeit betrachtet wird. Die Erde spielte aber nach wie vor eine Sonderrolle. Die Erdbahn ist als einzige eine exakte Kreisbahn, in deren Mittelpunkt die mittlere Sonne ruht und sich die Bahnebenen und Apsidenlinien aller anderen Planeten schneiden.

Der aristotelische Grundgedanke der gleichförmigen Kreisbewegungen der Planeten wurde erst Anfang des 17. Jahrhunderts von Johannes Kepler aufgegeben. Mithilfe der langjährigen Beobachtungen Tycho Brahes, die viel genauer waren als bisher und sich vor allem auch über den ganzen sichtbaren Teil der Planetenbahnen erstreckten, konnte er die Form der Bahnen und die Variation der Bahngeschwindigkeit bestimmen. Er arbeitete ein Modell aus, in dem die Planeten sich auf einer Ellipse bewegen, in deren einem Brennpunkt sich die (wahre) Sonne befindet (1. Keplersches Gesetz), wobei die Bahngeschwindigkeit nach einem bestimmten Gesetz in Abhängigkeit vom Abstand zur Sonne variiert (2. Keplersches Gesetz). Die hiernach berechneten Planetenpositionen wichen von den Beobachtungen nur noch bis zu 1′ ab.