Kristall

Aus Twilight-Line Medien

Ein Kristall ist ein Festkörper, dessen Bausteine, z.B. Atome, Ionen oder Moleküle, regelmäßig in einer Kristallstruktur angeordnet sind. Bekannte kristalline Materialien sind Kochsalz, Zucker, Minerale und Schnee – aber auch die Metalle. Aufgrund der regelmäßigen Anordnung der Atome bzw. Moleküle weisen Kristalle keine kontinuierlichen, wohl aber diskrete Symmetrien auf. Man spricht von Fernordnung oder Translationssymmetrie.

Die Wissenschaft von den Eigenschaften und Formen der Kristalle ist die Kristallographie. Eng verwandt sind die Metallographie und die Mineralogie.

Genauere Definition, Unterscheidungen[Bearbeiten]

Ein Kristall ist ein homogener Körper, denn er ist stofflich und physikalisch einheitlich. Aber viele physikalische Eigenschaften sind von der Raumrichtung abhängig, d.h. ein Kristall ist anisotrop.

Vor 1992 wurden Kristalle über ihre Periodizität definiert: In diesem Sinne ist ein Kristall dreidimensional periodisch aus gleichbleibenden Struktureinheiten aufgebaut. Diese Struktureinheit heißt Einheitszelle oder Elementarzelle.

Seit 1992 ist ein Kristall gemäß der Internationalen Kristallographischen Union IUC durch seine diskreten Beugungsordnungenen (bei Beleuchtung mit Röntgenstrahlen) definiert. Er weist also eine Fernordnung auf, ist aber nicht zwangsläufig periodisch. Diese Definition wurde durch die 1984 entdeckten Quasikristalle erzwungen, die eine Untergruppe der aperiodischen Kristalle bilden. Gleichwohl bilden die periodischen Kristalle die bei weitem größte Untergruppe der Kristalle.

Je nach Ausprägung der äußeren Form unterscheidet man

  • unbeeinträchtigt ausgebildete, sogenannte idiomorphe (altgriechisch ìdios ‚eigen‘ und morphe ‚Gestalt‘) Kristalle und
  • xenomorphe (altgriechisch xénos ‚fremd‘ und morphe ‚Gestalt‘) Kristalle, deren äußere Form durch fremde Grenzflächen bestimmt ist.

Der idiomorphe Kristall weist in seiner äußeren Form auf die jeweilige Kristallstruktur hin. Deshalb sind z.B. ungestört gewachsene Natriumchloridkristalle (Kochsalz, Mineral Halit) würfelförmig. Auch bei idiomorphen Kristallen liegt in der Natur meist eine gewisse Verzerrung vor, d. h. die Kantenlängen (nicht aber die Winkel) können von der Idealform deutlich abweichen .

Die äußere Form eines Kristalls wird durch die voneinander unabhängigen Merkmale Kristallhabitus und Kristalltracht bestimmt. Die Kristallflächen werden ebenso wie Gitterebenen durch Millersche Indizes beschrieben.

Kristalltypen können auch durch die Art der Bindung ihrer Bausteine unterschieden werden (z.B. Ionenkristall).

Da die charakteristische Eigenschaft von Kristallen die regelmäßige Anordnung in allen drei Raumrichtungen ist, sind auch Körper denkbar, deren Bausteine sich nur in einer oder zwei Raumrichtungen wiederholen. Dann lässt sich von eindimensionalen und zweidimensionalen Kristallen sprechen. In der Natur kommen Membranproteine vor, die sich als zweidimensionale Kristalle in der Biomembran anordnen. Ein Beispiel ist Bacteriorhodopsin. In der Strukturbiologie werden 2D-Kristalle gezüchtet, um die Atompositionen der kristallisierten Makromoleküle mittels Elektronen-Kryomikroskopie zu ermitteln.

Außer Kristallen gibt es auch Körper, die keine innere Fernordnung haben und amorph genannt werden. Ein Beispiel ist Glas (auch sogenanntes Bleikristall und anderes Kristallglas).

Wenn eine Flüssigkeit anisotrop ist und dadurch einige Eigenschaften eines Kristalls aufweist, handelt es sich um einen Flüssigkristall.

Wortherkunft[Bearbeiten]

Der Begriff Kristall stammt von dem griechischen Wort krýstallos (zu krýos „Eiseskälte, Frost, Eis“). Es bedeutet zunächst, bei Homer, „Eis“, später dann auch alles dem Eis Ähnliche, Helle und Durchsichtige. Insbesondere der Bergkristall, aber auch farbige Edelsteine und Glas werden so genannt (z.B. bei Strabon und Claudius Aelianus).

Bei dem bereits im antiken Griechenland betriebenen Bergbau wurden wahrscheinlich Quarz-Kristalle entdeckt. Sie wurden für Eis gehalten, das bei so tiefen Temperaturen entstanden sein müsse, dass es nicht mehr schmelzen könne. Diese Ansicht war bis ins frühe Mittelalter verbreitet. Über das lateinische crystallus (auch cristallus, vor allem „Bergkristall“, und lapis cristallus) hat sich die althochdeutsche Bezeichnung kristallo gebildet, die sich im Laufe der Zeit zu Kristall gewandelt hat.

Struktur und Klassifikation periodischer Kristalle[Bearbeiten]

Die Richtung und die Länge der Vektoren, um die eine Kristallstruktur verschoben werden kann, so dass sich die Atompositionen wiederholen, beschreiben die Translations- oder Basisvektoren. Daher wird die Struktur jeder Kristallart mit einem eigenen, spezifischen Koordinatensystem, dem Achsensystem, dargestellt. Neben der Verschiebung kann eine Kristallstruktur auch gedanklich um diese Achsen gedreht werden, bis sich die gedrehte Struktur mit der ursprünglichen Struktur deckt. Weil die Translationssymmetrie erhalten bleiben muss, können nur Drehsymmetrien vorkommen, die in einer vollständigen Drehung (360°) eine, zwei, drei, vier oder sechs Wiederholungen beschreiben. Es wird dabei von 1-, 2-, 3-, 4- oder 6-zähligen Achsen gesprochen. Es gibt Kristalle, die außer Drehachsen und Translationen weitere Symmetrieelemente aufweisen, nämlich Spiegelebenen und Inversionszentren, sowie Kopplungen zwischen diesen Symmetrien zu Drehinversionen, Gleitspiegelungen und Schraubungen.

Für die Klassifizierung von Kristallen werden die Symmetrieeigenschaften verwendet. Dabei ist die Anzahl der denkbaren Kombinations- und Kopplungsmöglichkeiten von Symmetrieelementen beschränkt (siehe auch Gruppentheorie). Es gibt bei zweidimensionalen Kristallen 17 ebene kristallographische Gruppen und bei dreidimensionalen Kristallen 230 kristallographische Raumgruppen, die vollständig in den International Tables for Crystallography, Vol. A aufgeführt sind.

Wird ein neuer Kristall untersucht, ist die Raumgruppe zunächst unbekannt. Bei der Beschreibung der äußeren Form des Kristalls lässt er sich nur einer von 32 Punktgruppen (auch Kristallklassen genannt) zuordnen. Diese Punktgruppen beschreiben die makroskopischen Symmetrieeigenschaften der Kristalle und fassen diejenigen Raumgruppen zusammen, die sich nur in der Translationssymmetrie unterscheiden. Die Translation spielt bei der äußeren Betrachtung von Kristallen keine Rolle. Weil die Winkel zwischen den Kristallflächen für jede Kristallart gleich sind und oft mit einer Rotationssymmetrie vereinbar sind (z.B. 90° bei Halit mit vierfacher Rotationssymmetrie), werden zur Beschreibung der Kristallmorphologie sieben Kristallsysteme verwendet, bei denen sich die Lage und relative Länge der Zellachsen unterscheiden. Ein Kristall ist je nach Zugehörigkeit zum entsprechenden Kristallsystem triklin, monoklin, orthorhombisch, tetragonal, trigonal, hexagonal oder kubisch.

Auguste Bravais klassifizierte die verschiedenen möglichen Translationsgitter. Diese Gitter bestehen aus gleichen Parallelepipeden, deren Ecken die Gitterpunkte darstellen. Um die Symmetrie von bestimmten Gittern beschreiben zu können, ließ er neben primitiven Elementarzellen (mit einem Gitterpunkt pro Zelle) auch größere Elementarzellen zu, die flächen- oder innenzentriert sind. Ein Beispiel für eine flächenzentrierte Elementarzelle ist in Abb. 5 gezeigt. Es gibt im dreidimensionalen Raum 14 Bravais-Gitter.

Bei der Kristallstrukturanalyse lassen sich die Streumuster der Röntgenbeugung in elf zentrosymmetrische Punktgruppen einteilen, die Lauegruppen oder Laueklassen genannt werden. Denn auch bei nicht-zentrosymmetrischen Kristallstrukturen entstehen zentrosymmetrische Beugungsmuster, da die Reflexe als Friedelpaare mit normalerweise gleicher Intensität auftreten. Die Lauegruppen lassen sich demnach herleiten, indem ein Symmetriezentrum zu der Punktgruppe des Kristalls hinzugefügt wird.

Die Kristallstruktur ist nicht stoffspezifisch, das heißt eine Substanz mit bestimmter chemischer Zusammensetzung kann je nach äußeren Bedingungen (Druck, Temperatur) unterschiedliche thermodynamisch stabile Strukturen besitzen. Die verschiedenen Kristallstrukturen derselben Substanz werden Modifikationen genannt; die Existenz verschiedener Modifikationen heißt Polymorphie. Die Modifikationen stellen unterschiedliche Phasen im Sinne der physikalischen Chemie dar, deren Stabilitätsbereiche in Phasendiagrammen dargestellt werden können. Die einzelnen Modifikationen bzw. Phasen einer Substanz werden, neben eventuell vorhandenen Eigennamen, üblicherweise mit kleinen griechischen Buchstaben durchnummeriert (beim Eisen z.B. α- (Ferrit), γ- (Austenit), δ-, ε-Eisen; vgl. Eisen-Kohlenstoff-Diagramm).